在伺服模塊中閥位給定電壓與反映油動機行程的LVDT反饋電壓進行比較,經比例放大后輸出給伺服閥。伺服閥根據控制信號的大小及方向控制作油動機開啟或關閉的速度。油動機行程到達給定值時,伺服閥處于斷流位置,油動機行程維持不變。
圖4:連續控制油動機示意圖
對于中壓主汽閥門由兩位控制油動機控制,只能使閥門定位在全開(全關)位置,在安全油建立期間,油動機受電磁閥控制,電磁閥帶電時油動機全關,失電時全開。
l DEH控制系統的特點
1) 一次調頻
電網一次調頻作用是電網頻率很重要的穩定基礎,發電機組的轉速有差調節反饋是實現電網一次調頻作用最有效的手段,機組轉速反饋同時也是機組運行安全最有力的保障。
傳統DEH系統,在升速階段一次調頻功能不起作用。在機組并入大電網后,而由于通常電網頻率較穩定,也不能檢驗一次調頻的動態性能。有的在孤網狀態下甚至是不穩定的。
與傳統DEH比較采用了快速一次調頻回路(如圖5),以提高一次調頻動態響應性能。一次調頻信號不加任何切換邏輯,直接作用到DEH的總閥位給定。機組在任何工況下,轉速反饋都存在,對機組及電網的安全運行提供了有力的安全防護。在升速階段即可驗證一次調頻的穩定性。
另外,在機組并網帶負荷時,若實際發電機并未并網。對于傳統DEH由于其一次調頻功能尚未投入,帶初負荷的指令會引起機組超速。由于此DEH一次調頻功能的調節作用,帶初負荷的指令只會使機組轉速升高15r/min左右。
圖5:DEH控制系統SAMA圖主回路
2) (2) 主汽門調門切換
DEH升速過程采用主汽門(TV)控制,當升速到2950 r/min時,切換閥門,由主汽門控制切換為高壓調門(GV)控制,最后定速3000 r/min。
常規的閥切換經常由于TV與GV的開起和關閉速率配合不好而造成的汽機轉速波動很大[1],為此,通過改進閥切換控制方案:閥切換開始時,開高調門系數由1逐漸變為0,并且轉速PID同時作用于TV和GV,即:
GV閥位輸出=開高調門系數×100+(1-開高調門系數)×閥位給定(轉速PID輸出)
TV閥位輸出=(1-開高調門系數)×100+開高調門系數×閥位給定(轉速PID輸出)
control system.
Even good security patches can cause trouble for control system operators. As we discussed earlier, most of them need to shut down the system and re run the production process. In addition, they may also remove the functions previously relied on the control system. For example, a vulnerability of Stuxnet virus attack is the hard coded password vulnerability of Siemens WinCC SQL database. At that time, many security analysts accused Siemens of failing to release a patch to remove the password as soon as possible, but later found that the "cure" was even more serious than the disease. Users who change their passwords manually soon find that many key control functions need to be realized by entering the account with the help of password.
To make matters worse, the patch installation process usually requires the presence of employees with special skills. For example, the vulnerability of Slammer virus attack in January 2003 actually