HONEYWELL 51306733-175 CC-TAID01模塊備件,工控模塊
編程模擬輸入名稱1-2 0單位范圍:–100000至100000僅當模擬輸入差異1-2設置為Abs Diff Reflects時可見模擬輸入名稱編程模擬輸入名3-4 0百分比范圍:–5100至4900%僅當模擬輸出差異3-4設置為%Diff Refracts時可見下一頁編程的模擬輸入名稱可用于確定VT和CT是否處于正確相位,以及其極性是否正確。不正確接線引起的問題是極高的不平衡水平(CT)或錯誤的功率讀數(CT和VT)或相位反轉跳閘(VT)。要糾正接線,只需啟動電機并記錄相量。使用下表以及記錄的相量、系統旋轉、VT連接類型和電機功率因數,可以確定正確的相量。注意,Va的相位角(如果為δ,則為Vab)始終假設為0°,并且是所有角度測量的參考。常見問題包括:相位電流與正確位置相距180°(CT極性反轉)相位電流或電壓120°或240°輸出(CT/VT相位錯誤)n PHASORS n[ENTER]更多Va PHASOR 0.0%AT 0°Lag Vb PHASOR 0.0%AT 0℃Lag Vc PHASOR 0.01%AT 0℃Lag Ia PHASOR0.0%AT 1°Lag Ib PHASSOR 0.0%AT 2°Lag Ic PHASOR 0.0%AT 3°Lag ENTER ESCAPE信息逃生信息逃生GE Multilin 469電機管理繼電器5-15 5實際值5.3 A2測量數據5表5–1:三相WYE VT連接ABC旋轉72.5°=0.3 pf滯后45°=0.7 pf滯后0°=1.00學習數據5實際值5 5.4A3學習數據5.4.1電機啟動路徑:實際值×A3學習數據469學習加速時間,啟動電流以及電機啟動期間所需的熱容量。該數據是根據最近五次啟動累積的。469還保存了上次加速時間、上次啟動電流和上次啟動容量的統計數據。可使用S1 469 SETUP(設置)×INSTALLATION(安裝)×reset MOTOR information(重置電機信息)設定點將該信息重置為默認值。如果起動過程中電機負載相對一致,則可使用學習加速度時間微調加速度保護。學習的加速時間將是最近五次成功啟動中最長的時間。從電機電流從零到大于過載拾取的轉變,直到線路電流降至過載拾取水平以下,測量時間。在電機電流從零過渡到大于過載拾取200 ms后,測量學習起動電流。這應確保測量的電流是對稱的。顯示的值是最近5次成功啟動的平均值。如果少于5次啟動,則整個5次啟動的平均值為0。學習啟動容量用于確定是否有足夠的熱容量允許啟動(有關啟動禁止的更多信息,請參閱第4–48頁第4.8.2節:啟動禁止)。如果沒有足夠的熱容量進行啟動,將發出啟動禁止。
Input Name as programmed ANALOG 1-2 0 Units Range: –100000 to 100000 Seen only if Analog In Diff 1-2 set to Abs Diff Reflects Analog Input Name as programmed ANALOG 3-4 0 Percent Range: –5100 to 4900% Seen only if Analog In Diff 3-4 set to %Diff Reflects Analog Input Name as programmed ANALOG 3-4 0 Units Range: –100000 to 100000 Seen only if Analog In Diff 3-4 set to Abs Diff Reflects Analog Input Name as programmed the following page can be used to determine if VTs and CTs are on the correct phases and that their polarity is correct. Problems arising from incorrect wiring are extremely high unbalance levels (CTs) or erroneous power readings (CTs and VTs) or phase reversal trips (VTs). To correct wiring, simply start the motor and record the phasors. Using the tables below along with recorded phasors, system rotation, VT connection type, and motor power factor the correct phasors can be determined. Note that the phase angle for Va (Vab if delta) is always assumed to be 0° and is the reference for all angle measurements. Common problems include: Phase currents 180° from proper location (CT polarity reversed) Phase currents or voltages 120 or 240° out (CT/VT on wrong phase) n PHASORS n [ENTER] for more Va PHASOR 0.0% AT 0°Lag Vb PHASOR 0.0% AT 0°Lag Vc PHASOR 0.0% AT 0°Lag Ia PHASOR 0.0% AT 0°Lag Ib PHASOR 0.0% AT 0°Lag Ic PHASOR 0.0% AT 0°Lag ENTER ESCAPE e e MESSAGE ESCAPE MESSAGE ESCAPE MESSAGE ESCAPE MESSAGE ESCAPE MESSAGE ESCAPE GE Multilin 469 Motor Management Relay 5-15 5 ACTUAL VALUES 5.3 A2 METERING DATA 5 Table 5–1: THREE-PHASE WYE VT CONNECTION ABC Rotation 72.5° = 0.3 pf lag 45° = 0.7 pf lag 0° = 1.00 LEARNED DATA 5 ACTUAL VALUES 5 5.4A3 LEARNED DATA 5.4.1 MOTOR STARTING PATH: ACTUAL VALUES ?× A3 LEARNED DATA ? MOTOR STARTING The 469 learns the acceleration time, the starting current, as well as, the thermal capacity required during motor starts. This data is accumulated based on the last five starts. The 469 also keeps statistics for last acceleration time, last starting current, and last starting capacity. This information can be reset to default using the S1 469 SETUP ?× INSTALLATION ?× RESET MOTOR INFORMATION setpoint. If motor load during starting is relatively consistent, the LEARNED ACCELERATION TIME may be used to fine tune the acceleration protection. Learned acceleration time will be the longest time of the last five successful starts. The time is measured from the transition of motor current from zero to greater than overload pickup, until line current falls below the overload pickup level. LEARNED STARTING CURRENT is measured 200 ms after the transition of motor current from zero to greater than overload pickup. This should ensure that the measured current is symmetrical. The value displayed is the average of the last 5 successful starts. If there are less than 5 starts, 0s will be averaged in for the full 5 starts. The LEARNED STARTING CAPACITY is used to determine if there is enough thermal capacity to permit a start (refer to Section 4.8.2: Start Inhibit on page 4–48 for more information on start inhibit). If there is not enough thermal capacity for a start, a start inhibit will be issued.