FPS400-24輸入模擬量模塊,P0922YU使用進展
并入繼電器后發(fā)生觸點短路失效的原因,通過原理、實驗測試、驗證及繼電器材料方面,詳細解析繼電器在電路設計應用過程中的問題點,為繼電器在開關電源產品上的設計提供參考。
01 失效現(xiàn)象及來源實際工程設計中,把圖1的PFC電路設計到產品上,測試發(fā)現(xiàn)沖擊電流超標(設計目標≤25A),到達70A。本方案中,熱敏電阻RT1的阻值為10Ω,理論上計算,按照輸入電壓為90VAC,即在相位90°或270°時,
FPS400-24輸入模擬量模塊,P0922YU使用進展有最大的輸入峰值電壓為90*√2≈127V,輸入最大峰值電流(輸入沖擊電流)為Imax=127/10=12.7A,測試結果和理論計算完全偏離。結合圖1分析,影響輸入沖擊電流的器件主要是熱敏電阻RT1和繼電器K1,有以下4種組合情況:
1)熱敏電阻開路和繼電器未吸合,此時輸入屬于開路狀態(tài),產品應該無輸入;
2)熱敏電阻開路和繼電器吸合,輸入電流經過繼電器直接給到后端電路,熱敏電阻在電路中不起作用,輸入沖擊電流大;
3)熱敏電阻正常和繼電器未吸合,輸入電流經過熱敏電阻給到后端電路,輸入沖擊電流受抑制而減少;
4)熱敏電阻正常和繼電器吸合,輸入電流主要經繼電器給到后端電路,熱敏電阻在電路中不起作用,輸入沖擊電流大;
對熱敏電阻和繼電器進行檢測,結果為熱敏電阻阻值正常,繼電器在沒有供電的情況下常開點處于吸合狀態(tài),也就是繼電器為異常器件。更換新的繼電器后,測得的沖擊電流僅為7.4A。之前產品測試沖擊電流超標屬于第④種情況,輸入電流主要經繼電器給到后端電路,熱敏電阻在電路中不起作用,導致輸入沖擊電流大。
電路圖1的工作原理為:繼電器K1并聯(lián)在輸入熱敏電阻RT1的兩端,由PFC電感L2的輔助繞組經過線性穩(wěn)壓后供電。當開關電源上電啟動后,因為繼電器K1此時沒有供電電壓,繼電器K1處于開路狀態(tài),輸入電流通過熱敏電阻RT1給大電解電容C8充電,從而限制了開機的輸入沖擊電流。當功率管Q1接收的驅動信號后,PFC電感L2輔助繞組電壓建立,即繼電器K1供電電壓建立。當供電電壓達到9V左右時,繼電器開始工作,觸點閉合把熱敏電阻RT1短路,降低產品工作時的輸入線路阻抗,減少損耗,提高產品的效率。
02 繼電器觸點短路失效的原因
EMC design of printed circuit board (PCB)PCB is the support of circuit components and devices in single chip microcomputer system. It provides the electrical connection between circuit components and devices. With the rapid development of electronic technology, the density of PCB is getting higher and higher. The quality of PCB design has a great impact on the electromagnetic compatibility of single chip microcomputer system. Practice has proved that even if the circuit schematic design is correct and the printed circuit board design is improper, it will also have an adverse impact on the reliability of single chip microcomputer system. For example, if the two thin parallel lines of the printed board are close together, the delay of the signal waveform will be formed, and the reflected noise will be formed at the end of the transmission line. Therefore, when designing PCB, we should pay attention to the correct method, abide by the general